BLM Integrator / Digitizer
FPGA Logic and Functions

Introduction

Il. Integrator Sequence Control

lll.  Digitizer Readout and Control

IV. VME Bus Interface
The data transfer modes supported are A24D16 modes.

I Standard Supervisory Block Transfer, AM[5..0] = 3F
i Standard Supervisory program access, AM[5..0] = 3E
iii. Standard Supervisory data access, AM[5..0] =3D
iv. Standard Non-privileged Block Transfer, AM[5..0] =3B
V. Standard Non-privileged program access, AM[5..0] =3A
Vi. Standard Non-privileged dataaccess, AM[5..0] =39

Program access is treated exactly the same as data access. Supervisory modes are treated
exactly the same as non-privileged modes. Block transfers are supported.

The logic has mainly two parts. Thefirst is a state machine that handles the handshaking and
timing for the VME data transfer. Figure IV.2.1 is a representation of the state transitions.
The second is an address decoder that produces the necessary latches and chip sdlectsto Read
or Write the registers implemented in the FPGA or the SRAM memory. The address decoder
portion also generates the necessary control signals for the VME data bus transceivers.
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FigurelV.21 VME Interface State Transtion Diagram

In Figure IV.2.2 gives the timing diagram for aVME transaction. Thistiming is general
for either Reads or Writes. The state of the VME WRITE/ line will determine how the
RD_GATE/ and WR_GATE/ signalsare used. ThisVME bus interfaceis particularly
slow. The design does alow alot of setup and hold time for the datalines. All of the
incoming VME bus signals are synchronized to the local logic clock (40ns). Thisalso
adds to the total transfer time, but is essential in order to avoid crashing the state
machine, asit iswritten. Extratime is also taken up by the SRAM memory access

control (V_Request, V_Busy, V_Access). The memory access control logic is discussed
in its own section.
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FigurelV.2.2 VME Interface Timing Diagram



The 24 VME address lines are used asindicated in Figure 1VV.2.3. The most significant 5
bits (A23 to A19) are compared to DIP switches on the module to determine if the
particular board is being addressed. Bits A18 and A17 determine which of the 4 channels
on the board isinvolved. Thefinal 16 bits are used to address memory and registers for
the selected channel.

A23 A18 A18A1T A16 at |

VME 24 Bit Address |  Board Select | [Chan# || Register Address Bits. SRAM Address Bits [15.0] |
i

FigurelV.23 VME AddressBits

The memory map (as of Sept. 2004) isgivenin Table1V.2.1. Note that all 65,536
locations in the SRAM memory for each channel can only be accessed viathe circular
buffer interface. The most upper 16 addresses (OxFFFO to OxFFFF) had to be set aside as
control and status registers. This still leaves 65,520 addresses in each channels SRAM
that can be accessed individually.

TablelV.2.1 Integrator / Digitizer Memory Map

Description Address[15..0] R/IW
SRAM Circular Buffer OxFFFF R only
Command Register OxFFFE R/W

Status Register OXFFFD R only
Integrator Valuesin SRAM 0x0000 to OXxFFEF R only

The Altera AHDL logic that implements this VME interfaceis listed in Appendix A.

SRAM Memory Access Control

V.1 The Circular Buffers

Each of the four integrator channels have 64K x 16 bits of SRAM memory on the board.
Every 21 us the digitized value from each channel iswritten into its memory. The
memory isused as four circular buffers. Every time avalue iswritten into the memory
the Input Pointer is advanced. When the Input Pointer reaches the final memory location
in the 64K SRAM ( 65,535 ), it wraps back around to the memory location 0. Also an
Output Pointer is maintained. This pointer points to the oldest value in memory. The
Output Pointer is advanced whenever the SRAM circular buffer isread by the VME
interface. The Output Pointer also advances whenever the Input Pointer has wrapped all
the way back to the Output Pointer and the Input Pointer is advanced.

Since each of the four integrator channels are updated every 21 usit should always be the
case that the Input Pointer for every channel isthe same value. The only processin the
current application intended to be writing values into the circular buffersis the storing of
integrator values every 21 us.



V.2 Processes That Use the SRAM Memory

There are three different processes implemented in the FPGA logic that Read and/or
Write the SRAM memory asindicated in FigureV.2.1. .

Process 1: Write

Integrator Values
Into Circular Buffer \
Process 2: VME Bus /

Read of Integrator
Values in Memory

Process 3: Sums
SRAM Memory Calculation Read of
Integrator Values

FigureV.2.1 Three processesthat accessmemory.

Every 21 usthereisaneed for FPGA 1 to write the four integrator values into memory.
The Sums are computed every 21 usin FPGA 2. The memory is Read by this process.
Integrator values can be Read from the memory viathe VME interface.

Note that these are not three different subroutines of a program running in asingle
processor, but these are three logical function blocks made up of their own independent
set of logic gates, running simultaneousdly.

Through the VME interface, each memory location below OxFFFO (65,520) is
individually accessible. For applications like the Booster that runs for no more than 40
ms and then starts again thisis plenty of memory. For applications like the Tevatron
where integrator values are updated continuously, the full record (65,536 measurements)
can be read viathe circular buffer mapped at address OxFFFF. Control and status
registers are mapped into the addresses between OxFFFO and OxFFFE.

V.3 Memory Access Arbitration

The four 64K x 16 bit SRAM memory chips are all connected with acommon 16 bit
address and 16 bit data buses, as well as acommon Write signal line (WR/) and a
common output enable line (OE/). The output enable is used when the memory is being
Read. Each memory chip hasits own chip select (CY) line that is used to select the
individual memory chip that is meant to respond. Schematically, each of the three
processes that access the memory have their own set of these memory control lines.



However the memory control lines of only one process at atime are allow to drive the
actual memory control lines connected to the memory chips.

Logic in FPGA 1 implements a simple scheme for arbitrating which processis alowed
access to the memory. Each process hastwo logical signalsit sets and clears. These are
the Request line and the Busy line. Each process has a single logical input that indicates
that it has access to the memory. Thisisthe Accessline. The schemeisasfollows.

1)

2)

3)

4)

5)

6)

Logical processes wanting to Read or Write from the SRAM memory must set
their Request line (Rgst) active and wait for their Bus Access line (Access) to
become active before beginning their memory access.

Before releasing their Request line, their Busy line should be set active. Note
that the Request line may remain active until the memory access has been
completed. Then the Request line must be released before or simultaneously
with the Busy Line going inactive.

No other logical process will be granted access to the memory while the process
that was granted access, holds its Busy line active.

If ahigher priority process sets its Request line active while alower priority
process is Busy, the Bus Access line for the lower priority process will go
inactive indicating that the lower priority process should suspend its memory
access and set its Busy line inactive. The lower priority process should keep its
Request line active if it had not completed its memory access.

If alower priority process setsits Request line active while a higher priority
process is Busy, the status of the higher priority process Bus Access line will
not change. The lower priority process will not seeits Bus Accessline go
active until the higher priority process has released its Busy line.

There are no registersin which priorities are set as there arein some
microprocessors. The priority is hard coded into the state machine that
implements the arbitration.

To describe this another way, atypical sequence of events for a processes memory access
would be

1) Set Request line active.

2) Wait for Bus Access lineto go active.

3) Set Busy line active and do memory Read and/or Write.

4) If while busy accessing the memory the Bus Access line goes inactive suspend

further memory accesses, set the Busy line inactive, and leave the Request line
active if the memory access was not compl eted.



5) When the Bus Access Line goes active once again set the Busy Line active again
and continue the memory access.

6) Once the memory access is complete set both the Busy Line and the Request
Line inactive.

Note that a processes memory access is considered to be any number of Reads and/or
Writes and the arbitration scheme does not force immediate pre-emption of alower
priority process memory access. A processis expected to suspend its memory access at
an appropriate point for that process.

V. Analog Output DAC Loading

stray stuff

Control Bus Logic

1. A signal from the Integrator control logic will initiate the following sequence

a)

b)
c)

d)

f)

The Control Bus FPGA will set its Bus Request bit signal and wait for its
Bus Access hit to go active.

The Bus Busy bit signal will be set active.

A signal to the sumslogic is generated to start the computation of new
sums.

When the new sums have been computed the values are latched into
registers and the new sums are compared to their associated thresholds.

If any of the twelve sums (4 channels x 3 different length sums) or any of
the 4 immediate integrator values are over threshold the appropriate abort
bit is set.

When the computation of the sumsis complete the Bus Request and Bus
Busy bit will be set inactive.

2. Theregisters holding the value of the sumswill be double buffered by following
the registers with latches that will be latched by the Control Bus backplane signals
Fast LATCH(0), Slow_LATCH(1), and Vslow_LATCH(2).



3. Thesignals AbortCS[4..2] are compared to the jJumper selected address on the
module. When there is a match the registers holding the Abort status bits are
latched and the signals AbortCS[ 1..0] sequence through the four sets of four
Abort status bits, putting their values on the Control Bus lines ABORT][3..0]..



APPENDIX A

Intg_vme.tdf: Altera AHDL file that implementsthe VME interface for the Integrator Digitizer board.

CONSTANT SETUP_DELAY_COUNT = B"0101";

SUBDESI GN | ntg_vne

(
clk, reset/, A 18..1], V_Access : |NPUT;
AM 5..0], IACK/, LWORD/, AS/, AMATCH : | NPUT;
DSo/, DS1/, WRITE/ : | NPUT;

vmePTR] 15..0], V_Busy, V_Rgst : OUTPUT;
LEAB/, CEAB/, OEAB/, CEBA/, DTACK, BERR : OUTPUT;

RD CirBuf1, RD_Ci r Buf 2, RD_Ci r Buf 3, RD CirBuf4 : QOUTPUT;
RD_Command, WR Command, RD Status : OUTPUT;

vme_ MEM CS/ 1, vme_MEM CS/ 2, vme_MEM CS/ 3, vrme_MEM CS/ 4 : QUTPUT;
RD_SRAM , VR _SRAM, vneSRAM ACCESS, nBRDSEL : OUTPUT;

RD_GATE/, WR GATE/, STATE[2..0], nDS_SUM : OUJTPUT; %Si nul ation Test poi nt s%
)

VARl ABLE
nBRDSEL : LCELL;

BLOCK : LCELL;

sync_DS[1..0] . DFF;

nDS . LCELL;

sync_wite . DFF;

vmeVRl TE/ : LCELL;

sync_AS/ . DFF;

veAS/ : LCELL;

VME_SM : MACHI NE

OF BI TS (STATE[2..0])
W TH STATES (

| DLE =B" 000",
BRD SELECTED =B"001",
DATA SETUP_DLY =B"101",
STROBE_WR =B"011",
DTACKEN =B"100",
XFER_DONE =B"010",
BUS_ERROR =B"110",
XSTATE1 =B"111" );

CNT[ 3. . 0] . DFFE;

SETUP : LCELL;

BUSY : LCELL;



ALATCH 18..1] : DFFE;
CHAN[ 1. . 0] : NODE

rl : DFF, % Hel ps synchroni ze conbinatorial logic for the RD GATE/ signal %

BEG N
9 %
% VME Handshaki ng Logic %
% | NPUTS %
% Synchroni ze the VME signals to the local logic clock %
sync_DS[].clk = clk;
sync_DS[].prn = reset/;
sync_DS1.d = DS1/;
sync_DS0.d = DS0/;
nDS = sync_DS1.q & sync_DSO. qg;
nDS_SUM = nDS; %DS SUMis just a testpoint for sinulation%
sync_wite.clk = clk;
sync_wite.prn = reset/;
sync_wite.d = WRI TH ; %N\Note: The VME WRITE/ line will be valid for at |east%
% 10ns after the DS/ lines have termnated the %
% transfer. %
vmeWRI TE/ = sync_write.q;
sync_AS/.clk = clk;
sync_AS/.prn = reset/;
sync_AS/.d = AS/;
vneAS/ = sync_AS/.q;
% STANDARD ADDRESS MODI FI ER DECCODE %
nBRDSEL = ! (
(1ACKI & LWORD) & AMb & AMA & AMB & AML & | AMD & !vreAS/ & ! AVATCH )
# (1ACK/ & LWORD/ & AMb & AMA & AMB & ' AML & AMD & !vnmeAS/ & ! AMATCH )
# (1ACK/ & LWORD/ & AMG & AVM & AMB & AML & AMD & !vneAS/ & ! AMATCH ));
BLOCK = I nBRDSEL & AML & AMD; % Bl ock transfer indication %
% Del ay Counter to guarantee a sufficient data setup tine %

CNT[].clk = clk;
CNT[].clrn = ! (| DLE#XFER_DONE) ;
CNT[].ena = !SETUP,

| F DATA_SETUP_DLY THEN
CNT[].d = ONT[].q + 1;
ELSE



CNT[].d =

END | F,

IF (ONT[].q ==

SETUP = VCC,

ELSE

SETUP = GND;

END | F;

V_Rgst = (! nBRDSEL & ! nDS);
V_Busy =
% OUTPUTS
DTACK = DTACKEN;
BERR = BUS_ERRCR,
WR_GATE/ = ! DATA _SETUP_DLY;
rl.clk = cl k;
rl. prn = reset/;
ri.d =
RD_GATE/ =
% VME STATE MACHI NE
VME_SM cl k = cl k;
VME_SM reset = !reset/;
TABLE
reset/, nBRDSEL, BLOCK, nDS, SETUP,
% Reset %
o , X X , X, X
% |1 DLE %
1, 1 , X , X, X
1, 0 , X , X, X
% BOARD SELECTED %
1, 1 , X , X, X
1, 0 , X , 1, X
1, 0 , X , 0, X
1, 0 , X , 0, X
% DATA_SETUP_DLY %
1, X X , 1, X
1, X X , 0, 0
1, X X , 0, 1
% STROBE_WR %
X X X , X, X
% DTACK ENABLE %
1, X X , 0, X
1 X X 1 X

% Menory bus arbitration variabl es
% refer to "nemarbitration.tdf" for an explanation of the arbitration protocol %

CNT[] . q;

BUSY = !'V_Access;

% Thi s says Hol d-of f,

SETUP_DELAY_COUNT) THEN

the nmenory is busy,

%

VME doe not have access%

% This is the VME' s request for the bus %

( DATA_SETUP_DLY # STROBE_WR # DTACKEN)

% This line holds off all

| (DATA SETUP DLY # STROBE_WR # DTACKEN);
| (DATA_SETUP_DLY # STROBE_WR # DTACKEN)

% This bit of
% RD_GATE/

%

ot hers

I ogi c hol ds
|l ow and snooths %

%

%

% over possible glitches due%

& rl.q;%to conbinatorial

l ogic

BUSY,

OFRr XX XX

XX X XXX

VME_SM
| DLE

I DLE
I DLE

BRD_SELECTED
BRD_SELECTED
BRD_SELECTED
BRD_SELECTED

=>
=>

DATA_SETUP_DLY =>
DATA_SETUP_DLY =>
DATA_SETUP_DLY =>

STROBE_WR

DTACKEN
DTACKEN

==

==

VME_SM
| DLE;

| DLE;
BRD_SELECTED,;

| DLE;
BRD_SELECTED,;
BRD_SELECTED,;

DATA_SETUP_DLY;

BUS_ERROR,

DATA_SETUP_DLY;

STROBE_WR;
DTACKEN:;

DTACKEN,
XFER_DONE;

% wait for

%

%

% got a board sel ect

% | ost the board sel ect

% wait for

DS to go | ow

% HOLDOFF 1S ACTI VE

% recei ved DS

% Lost the data strobe -> BUS ERR

% wait for 200ns

% set up over

%
%
%

% Ensures one clock data hold tine %

DS to go inactive %

%transfer is conpleted %



% TRANSFER COVPLETED %

1, 0 , X , 1, X , X , XFER _DONE => XFER_DONE; % wait for nDS or AS/ to change
1, 0 , o, X, X , X , XFER _DONE => XFER_DONE; % wait for nDS or AS/ to change
1, 0 , 1, 0, X , 1 , XFER DONE => XFER_DONE; % HOLDOFF |'S ACTI VE
1, 0 , i, 0, X , 0 , XFER _DONE => DATA SETUP_DLY; % conti nue the bl ock transfer
1, 1 , X , X, X , X , XFER_DONE => |DLE; %all done -> IDLE %
% BUS ERRCR %
1, X , X , X, X , X , BUS_ERROR => |DLE;, % Go Idle %
% | LLEGAL STATES %
1, X X , X, X , X , XSTATEl => |IDLE;, % Go ldle %
END TABLE; % %
9 %
% VME Address Decodi ng Logic %
ALATCH ].clk = clk; % his |latch guarantees the address is held %
ALATCH[].clrn = reset/; % or as long as we may need it. %
ALATCH[] . d = A 18..1];
ALATCH ].ena = RD_GATE/ ;
CHAN 1. . 0] = ALATCH 18..17].q;
vmePTR[ 15..0] = ALATCH[ 16..1].q; %Address pointer out to SRAM Menory%
RD CirBufl = | RD GATE/ & (vmeWRI TE/ == VCC) & (CHAN[] == 0) & (ALATCH[ 16..1].q == H'FFFF");
RD CirBuf2 = | RD_ GATE/ & (vmeWRITE/ == VCC) & (CHAN[] == 1) & (ALATCH[ 16..1].q == H'FFFF");
RD_CirBuf3 = | RD_GATEH & (vmeWRI TE/ == VCC) & (CHAN[] == 2) & (ALATCH 16..1].q == H'FFFF");
RD_CirBuf4 = | RD_GATEH & (vmeWRI TE/ == VCC) & (CHAN[] == 3) & (ALATCH 16..1].q == H'FFFF");
RD_Conmand = !RD_GATE/ & (vmeWRI TE/ == VCC) & (ALATCH 16..1].q == H'FFFE");
WR_Command = STROBE_WR & (vmeWRI TE/ == GND) & (ALATCH 16..1].q == H'FFFE");
RD Status = !RD_GATE/ & (vmeWRI TE/ == VCC) & (ALATCH 16..1].q == H'FFFD');
veSRAM ACCESS = (! RD_GATE/ & (A[16..1] < H'FFF0"));
RD_SRAM = ! (! RD GATE/ & (vmeWRI TE/ == VCC) & (ALATCH 16..1].q < H'FFF0"));
WR_SRAM = ! (IWR _GATE & (vmeWRI TE/ == G\D) & (ALATCH 16..1].q < H'FFF0"));
vire_MVEM CS/1 = | (I RD_GATE/ & (CHAN[] == 0) & (ALATCH 16..1].q < H'FFF0"));
vire_VEM CS/2 = | (I RD_GATE/ & (CHAN[] == 1) & (ALATCH 16..1].q < H'FFF0"));
vre_MEM CS/3 = | (! RD_GATE/ & (CHAN[] == 2) & (ALATCH 16..1].q < H'FFF0"));
vire_MEM CS/4 = | (! RD_GATE & (CHAN[] == 3) & (ALATCH 16..1].q < H'FFF0"));
% Logi c for the bus transceiver control I|ines %
LEAB/ = ! (! RD_GATE/ & (vmeWRITE/ == VCC)); % Doing a vie read %
CEAB/ = LEAB/;
OEAB/ = LEAB/;
OEBA/ = I (!RD_GATEH & (vmeWRITE/ == G\D)); % Doing a vhe wite %

END,

%
%

%



